Novel therapeutic approach for kidney fibrosis

DAVID HARRIS
30/09/17
Treat to help slow decline in kidney function and reduce hypertension risk*

- Lifestyle changes
 - Smoking cessation
 - Dietary salt restriction
 - Moderate alcohol consumption
 - Maintain BMI between 18.5 and 24.9 kg/m² through diet and exercise
 - Avoid more than two caffeinated drinks per day
- Blood pressure: assess and maintain blood pressure <130/80 mmHg with ACE inhibitor or ARB
- Cholesterol: maintain total cholesterol level <4.0 mmol/L with diet and statin
- Blood glucose (for patients with concurrent diabetes): aim for HbA₁c <7.0 %
- Avoid nephrotoxic drugs and episodes of acute kidney injury
Liraglutide: Renal Outcomes

GLP-1ra
Canagliflozin: Renal Outcomes

A Hospitalization for Heart Failure
Hazard ratio, 0.67 (95% CI, 0.52–0.87)

B Death from Any Cause
Hazard ratio, 0.87 (95% CI, 0.74–1.01)

C Progression of Albuminuria
Hazard ratio, 0.73 (95% CI, 0.67–0.79)

D Composite of 40% Reduction in eGFR, Requirement for Renal-Replacement Therapy, or Death from Renal Causes
Hazard ratio, 0.60 (95% CI, 0.47–0.77)

Integrated CANVAS Program

SGLT2 inhibitor
Tolvaptan in early-stage ADPKD

A Total Kidney Volume

C Kidney Function

Torres et al. NEJM 2012
Non diabetic CKD

not attractive for pharma

Population heterogeneity
Absence of reliable biomarkers for subgroup selection
Absence of reliable surrogates (efficacy biomarkers)
Large subject numbers
Long follow-up
Some novel therapies in human CKD

Pirfenidone: study withdrawn
Nox1/4 inhibitor – negative trial
Anti-CTGF antibodies FG3019: studies terminated
SSAO/ VAP1 inhibitors: phase 1 clinical trial concluded, not reported
Curcumin – phase 3 trial completed, not reported
Tranilast and analogues FT011: in phase 1b clinical trial
Alpha-lipoic acid: recruiting
Tie2 Rec activator - angiopoietin receptor, tyrosine kinase inhibitor: in development
JAK-STAT inhibitors: in development
LOX inhibitors: in development

Anti TGF-β Ab (LY2382770) – negative trial
FGS trial terminated

N=36
DB, randomised
TGF-β1 mAb for DN trial terminated

Voelker J et al. JASN 2017;28:953-962

N=416 DB, randomised phase 2
BMP7 and TGFβ1 are better predictors of major renal endpoints than eGFR+UACR

Wong MG et al. Kidney Int 2013;83:278-84
TRANSLATION OF SMALL MOLECULAR ANTI-FIBROTICS

N=63, mainly for respiratory (IPF), liver (NASH, NAFLD), and skin (scleroderma, keloid) diseases

N=11 for renal disease

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pirfenidone</td>
<td>multiple</td>
<td>diabetic nephropathy (DN, phase 2, completed)</td>
</tr>
<tr>
<td>F-351</td>
<td>p38 (α,γ) inh</td>
<td>(liver & kidney fibrosis (phase 1b/11)</td>
</tr>
<tr>
<td>Atrasentan</td>
<td>sel ETAr inh</td>
<td>DN (phase 11, SONAR)</td>
</tr>
<tr>
<td>GKT-137831</td>
<td>NOX1 & NOX4 inh</td>
<td>DN (phase 11)</td>
</tr>
<tr>
<td>Bardoxolone</td>
<td>NRF2-KEALi act</td>
<td>CKD & DN (phase 111, terminated—safety)</td>
</tr>
<tr>
<td>Baricitinib</td>
<td>JAK1 & JAK2 inh</td>
<td>DN (phase 11)</td>
</tr>
<tr>
<td>Emricasan</td>
<td>pan-caspase inh</td>
<td>severe renal impairment (phase 1)</td>
</tr>
<tr>
<td>Beraprost</td>
<td>prostacyclin analogue</td>
<td>primary glom disease (phase 11b/111)</td>
</tr>
<tr>
<td>CTP-499</td>
<td>pan-PDE inh</td>
<td>DN (phase 11, completed)</td>
</tr>
<tr>
<td>Pyridoxamine</td>
<td>metabolite of vit B6</td>
<td>DN (phase 11, completed)</td>
</tr>
<tr>
<td>Bindarit</td>
<td>CCL3, -7, -8 inh</td>
<td>DN (phase 11, completed)</td>
</tr>
</tbody>
</table>

TGF-β: the master regulator of fibrosis

Meng X-M et al. NRN 2016;12:325-38
TGF-β causes tissue fibrosis through three major Signaling Pathways

Hypothesis: β-catenin/Foxo is the key target to dissociate profibrotic from anti-inflammatory and wound-healing effects of TGF-β
Inhibition of β-catenin/TCF should increase β-catenin/Foxo binding

Both TCF & Foxo bind to the Armadillo repeats 1-7 of β-catenin

ICG-001, a peptidomimetic small molecule, selectively inhibits β-catenin/TCF in a CBP-dependent manner
TGF-β and regulatory T cells are key regulators of inflammation.
Anti-fibrotic effect of β-catenin/Foxo
β-catenin/Foxo1 protects against TGF-β-induced profibrotic changes in vitro
rhTGF-β1+ICG-001 increases β-catenin/Foxo in UUO kidney

proximity ligation assay
Inhibition of β-catenin/TCF interaction by ICG-001 decreases kidney fibrosis in UUO
Inhibition of β-catenin/TCF by ICG-001 increases β-catenin/Foxo1 in kidney of UUO mice

proximity ligation assay
β-catenin/Foxo1 protects against kidney fibrosis in UUO

(A) Immunofluorescence images of various proteins in different treatment groups: Control, UUO, UUO+rhTGF-β1, ICG-001, and UUO+ICG-001. Treatments include control, UUO, and UUO supplemented with rhTGF-β1 and ICG-001.

(B) Quantitative analysis of protein expression showing bar graphs for vimentin, collagen I, collagen III, and collagen IV. The graphs illustrate the percentage area distribution of each protein under different conditions.
β-catenin/Foxo1/TCF in human diabetic nephropathy & kidney transplant

![Proximity ligation assay]

- **Normal**
 - β-catenin/Foxo1
 - β-catenin/TCF

- **Fibrosis**
 - β-catenin/Foxo1
 - β-catenin/TCF

- Diabetic Nephropathy (r=0.8223)
- Transplant kidney (r=0.7611)

- P<0.01

- Diabetic Nephropathy (r=0.9223)
- Transplant kidney (r=0.7643)

- P<0.01
Renal β-catenin/Foxo1/TCF in human CKD

Transplant

Diabetic nephropathy

Hypertension

IgA nephropathy

Proximity ligation assay
Treg-dependent anti-inflammatory effect of β-catenin/Foxo
Inhibition of β-catenin/TCF interaction by ICG-001 reduces inflammation via iTreg in UUO kidney

Infiltrated cells (10 HP)

*P < 0.05 vs control
p < 0.05 vs untreated UUO
†p < 0.05 vs TGF-β1 treated UUO
Inhibition of β-catenin/TCF interaction by ICG-001 reduces macrophage infiltration via iTreg in UUO kidney

| Sham control | UUO | UUO+ TGF-β1 | UUO+ICG-001 | UUO+ TGF-β1+ICG-001 | Pc61+UUO+ TGF-β1+ICG-001 |

*P < 0.05 vs control
p < 0.05 vs untreated UUO
† p < 0.05 vs TGF-β1-treated UUO
Inhibition of β-catenin/TCF interaction by ICG-001 decreases kidney fibrosis, in part by iTregs

Sham control

UUO

UUO + TGF-β1

UUO + ICG-001

UUO + TGF-β1 + ICG-001

Pc61 + UUO + TGF-β1 + ICG-001

*P < 0.05 vs control
p < 0.05 vs untreated UUO
† p < 0.05 vs TGF-β1-treated UUO
rhTGF-β1 + ICG-001 reduces kidney fibrosis after unilateral ischaemia reperfusion, via Tregs
Inhibition of β-catenin/TCF interaction by ICG-001 prevents TGF-β1-induced distant organ fibrosis (liver)

$p < 0.05$ vs untreated UUO
† $p < 0.05$ vs TGF-β1-treated UUO
Inhibition of β-catenin/TCF interaction by ICG-001 prevents TGF-β1-induced distant organ fibrosis (lung)

$p < 0.05$ vs untreated UUO

† $p < 0.05$ vs TGF-β1-treated UUO
non-fibrotic wound-healing effect of β-catenin/Foxo in kidney injury
ICG-001 promotes non-fibrotic wound healing in rhTGF-β1–treated C1.1 cells

Scratch Assay

0 h 48 h

IF staining of E-cadherin / α-SMA

control TGF-β

TGF-β + ICG-001 ICG-001

* P < 0.01 vs. control; # P < 0.01 vs. TGF-β
Wound healing assay

WT

KO FoxO1

KO TCF1

48 h Control TGF-β TGF-β + ICG-001 ICG-001

Percentage of wound closure

Time (h)

WT
Foxo1 KO TCF1 KO
Therapeutic targeting β-catenin/Foxo by inhibition of β-catenin/TCF

reduces

fibrosis (kidney, lung, liver)

infiltration of lymphocytes & macrophages, (Treg-dependent)

increases

non-fibrotic wound healing
TARGETING INFLAMMATION

DNA VACCINATION
chemokines/receptors: CCL2, CCL5, CX3CR1
costimulatory molecules: CD40

INHIBITING EFFECTOR CELLS

REGULATORY CELLS
(mesenchymal stem cells)
protective macrophages: M2a, M2c, Mreg
tolerogenic dendritic cells
regulatory lymphocytes
regulatory innate lymphoid cells
anti-inflammatory macrophages may be profibrotic \textit{(in vitro)}

Which macrophages are pro-fibrotic?

- Proinflammatory (M1) \hspace{1cm} \text{NO}
- Suppressor (M2c) \hspace{1cm} \text{NO}
- Wound-healing (M2a) \hspace{1cm} \text{YES*}
- Fibrinolytic \hspace{1cm} \text{NO}

*but our studies show net effect \textit{in vivo} is anti-fibrotic
M2a or M2c in Adriamycin nephropathy

M2c > M2a: proteinuria, tubular cell atrophy, interstitial CD4 infiltration
Biopsy transcriptome expression profiling to identify kidney transplants at risk of chronic injury

O’Connell PJ et al. Lancet 2016;388:983-93
 IDENTIFYING PATHOGENIC GENE PATHWAYS IN RENAL TRANSPLANT FIBROSIS

identify kidney transplants at risk of chronic injury

Biopsy transcriptome expression profiling

evaluate profibrotic potential of genes predictive of progressive graft fibrosis

deletional mutations in cell lines
deletional mutations in zebrafish

determine the importance of HIF-1α and Wnt/β-catenin in progressive graft fibrosis

conditional knockout

O’Connell PJ, Grey S, Harris D, Zheng G, Yi S.
Renal MRI for function & severity of fibrosis

Morrell GR et al. JASN 2017;28:2564-2570

diffusion-weighted MRI
blood oxygen level–dependent MRI
MR elastography
susceptibility imaging

show promise
but currently limited accuracy & practicality
→ further development
MR elastography: heterogeneous kidney stiffness

Kirpalani A et al. CJASN 2017
MR elastography stiffness scores may predict future changes in kidney allograft function

Kirpalani A et al. CJASN 2017
TARGET FIBROSIS

INHIBIT β-catenin/TCF

STIMULATE β-catenin/Foxo

evaluate profibrotic potential of genes predictive of progressive fibrosis

TARGET INFLAMMATION

DNA VACCINATION

INHIBIT EFFECTOR CELLS

REGULATORY CELLS
 MSCs, Mφ, DCs, Tregs, ILCs