Winter Surge

Dr. KM Chow
Prince of Wales Hospital
A Call from Chemical Pathology

- Plasma potassium 7.9 mmol/L
- From a 53-year-old outpatient after blood test at the Blood Taking Centre
Headache for Bed Availability
<table>
<thead>
<tr>
<th>Laboratory Result: X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab: Chem</td>
</tr>
<tr>
<td>Request No.: 16C8480020</td>
</tr>
<tr>
<td>Profile: Bone Profile, LDH, LFT, RFT, UA</td>
</tr>
<tr>
<td>Request Date: 25-Oct-2016</td>
</tr>
</tbody>
</table>

Collect Date	13/08/16	09/09/16	09/09/16	20/09/16	25/10/16
Collect Time	11:04	14:26	19:25	11:48	14:40
Arrive Date	13/08/16	09/09/16	09/09/16	20/09/16	25/10/16
Arrive Time	11:08	15:30	19:38	12:25	15:31
Request No.	C6373959	C7178289	C7183724	C7463406	C8480020
Urgency	--	--	URGENT	--	--
Reference	--	--	--	--	--
Range	--	--	--	--	--
Units	--	--	--	--	--

PLASMA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>139</th>
<th>138</th>
<th>143</th>
<th>142</th>
<th>137 - 144</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mmol/l</td>
</tr>
<tr>
<td>Potassium</td>
<td>4.3</td>
<td>7.8</td>
<td>*</td>
<td>7.9</td>
<td>3.5 - 5.0</td>
</tr>
<tr>
<td>Urea</td>
<td>5.2</td>
<td>6.8</td>
<td>7.1</td>
<td>5.3</td>
<td>3.1 - 7.8</td>
</tr>
<tr>
<td>Creatinine</td>
<td>103</td>
<td>104</td>
<td>108</td>
<td>111</td>
<td>65 - 109$</td>
</tr>
<tr>
<td>Total Protein</td>
<td>74</td>
<td>69</td>
<td>68</td>
<td>66</td>
<td>60 - 80</td>
</tr>
<tr>
<td>Albumin</td>
<td>47</td>
<td>45</td>
<td>45</td>
<td>46</td>
<td>35 - 52</td>
</tr>
<tr>
<td>Total Bilirubin</td>
<td>18</td>
<td>23</td>
<td>*</td>
<td>25</td>
<td>< 19</td>
</tr>
<tr>
<td>Total ALP</td>
<td>71</td>
<td>68</td>
<td>70</td>
<td>76</td>
<td>43 - 105$</td>
</tr>
<tr>
<td>ALT/GPT</td>
<td>72</td>
<td>*</td>
<td>41</td>
<td>50</td>
<td>< 53</td>
</tr>
<tr>
<td>Urate</td>
<td>0.30</td>
<td>0.25</td>
<td>0.52</td>
<td></td>
<td>mmol/l</td>
</tr>
<tr>
<td>Calcium</td>
<td>2.30</td>
<td>2.27</td>
<td>2.20</td>
<td>2.20</td>
<td>2.15 - 2.66</td>
</tr>
<tr>
<td>Adj Calcium</td>
<td>2.22</td>
<td>2.20</td>
<td>2.11</td>
<td>*</td>
<td>2.15 - 2.55</td>
</tr>
<tr>
<td>Phosphate</td>
<td>1.17</td>
<td>1.24</td>
<td></td>
<td>1.14</td>
<td>0.72 - 1.39</td>
</tr>
<tr>
<td>LDH</td>
<td>289</td>
<td>*</td>
<td>230</td>
<td>*</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106 - 218</td>
</tr>
</tbody>
</table>

Comment:

[Significant values marked with an asterisk (*)]
Patient History

- 53-year-old smoker
- Family history unremarkable
- Beta thalassaemia trait
- Asymptomatic gallstone
- Haemolytic anaemia under haematologist
Recurrent hyperkalaemia

- Multiple *ad hoc* admission for abnormal potassium level
- K 6.0 – 7.9 mmol/L
- Not on slow K replacement and denied NSAID
- Serum Cr 103-111 μmol/L
Further Medical History

- Found cold agglutinin (titre 1:2048) in Union Hospital on year ago
- No documented Mycoplasma disease; denied Raynaud’s
- Direct Coomb’s test anti-C3d positive
- Bone marrow biopsy and CT scan no definite lymphoma
Further Medical History

- Recurrent haemolytic anaemia, usual Hb 9-10 g/dL
- G6PD activity normal
- Repeated cold agglutinin titre > 1:4096
ECG
Few Words About Cold Agglutinin Disease

A form of autoimmune haemolytic anaemia
Exposure to cold precipitates formation of thrombi (classically involving ears and acral sites)
Pathogenic cold agglutinins lead to haemolysis and haemagglutination (IgM mediated and complement cascade)

Two forms: Cold Agglutinin Disease

Primary: no underlying systemic cause

Secondary: associated with infection (infectious mononucleosis, HIV, Mycoplasma, etc) or lymphoproliferative disease
Cold agglutinin disease: diagnosis

- presence of chronic haemolytic anaemia
- positive direct antiglobulin test DAT (anti-C3 positive and negative anti-IgG)
- cold agglutinin titre > 1:64 (>1:512 usually clinically significant)

Back to Our Case of Hyperkalaemia and Management
Salient Features

Severe and recurrent hyperkalaemia in a patient without risk factors
Asymptomatic
Normal electrocardiogram ECG
Factitious hyperkalemia (pseudohyperkalemia) should be excluded
Box 3. Key Teaching Points

- Serum potassium measurement should be repeated to exclude pseudohyperkalemia in patients with a normal electrocardiogram and no risk factors for hyperkalemia. The hyperkalemia typically observed in patients with diabetic ketoacidosis is caused by insulin deficiency and the hypertonic state and not the result of the underlying organic acidosis.
- Hyperkalemia that is chronic is caused by impaired renal potassium excretion and not cell shift.
- Impaired renal potassium excretion can be the result of conditions that severely limit distal sodium delivery, decreased mineralocorticoid levels or activity, or a distal tubular defect; in many instances, one or more mechanisms are present.
- Withholding drugs that block the renin-angiotensin system only on the basis of impaired kidney function can potentially deprive many patients of the cardiovascular benefit they would otherwise receive because numerous steps can be taken to minimize the risk of hyperkalemia.
Risk Factors: Hyperkalaemia

- Chronic kidney disease: risk inversely related to GFR, increases substantially with eGFR < 30 mL/min/1.73m2
- Diabetes mellitus
- Decompensated congestive heart failure
- Medications

Palmer BF, Clegg DJ. Hyperkalemia. JAMA 2015;314:2405-2406
Drug Factors: Hyperkalaemia

- **Inhibition of renin release from juxtaglomerular cells**: β-blockers; calcineurin inhibitors: cyclosporine, tacrolimus; NSAID
- **Inhibition of aldosterone release from the adrenal gland**: heparin; ketoconazole
- **Mineralocorticoid receptor blockade**: spironolactone; eplerenone
- **Blockade of epithelial sodium channel in renal collecting duct**: amiloride; triamterene; trimethoprim
- **Potassium** supplements, salt substitutes, certain herbs, and potassium-enriched foods in setting of impaired renal excretion
How is Potassium Measured?

▪ Ion-selective electrode that converts activity of dissolved potassium in solution into an electric potential measured by a voltmeter

▪ **Serum potassium**: blood samples collected in tubes containing a clot activator

▪ **Plasma potassium**: blood samples collected in tubes containing heparin
Serum *versus* plasma Potassium

Serum potassium concentration is typically 0.1 to 0.4 mmol/L greater than plasma

- due to release of potassium from platelet granules during the clotting process
Pseudohyperkalaemia

First reported in 1955 as a marked elevation of serum potassium levels (due to leakage from platelets in vitro) in the absence of clinical evidence of electrolyte imbalance

Hartmann RC, Mellinkoff SM. Relationship of platelets to serum potassium concentration. J Clin Invest 1955;34:938
Pseudohyperkalaemia (Factitious hyperkalemia)

- Thrombocytosis (> 600 x 10⁹/L)
- White blood cell neoplasia (> 200 x 10⁹/L)
- Potassium moves out of red cells (stomatocytosis), or release from erythrocyte cytosol (*in vitro* haemolysis)
Pseudohyperkalaemia
(Factitious hyperkalemia)

- Mechanical factors (prolonged application of a tourniquet and fist clenching during the phlebotomy procedure; very high white blood cell counts and mechanical disruption of WBC via pneumatic tube systems)
Pseudohyperkalaemia
(Factitious hyperkalemia)

- Prolonged storage of blood / delayed analysis
- Blood collected from vein into which potassium is infused
- Haemolysis via small needle or traumatic venepuncture
How Do We Confirm / Exclude Pseudohyperkalaemia?
Experiment for Patient and Control

- Blood taking from the same doctor (KM Chow)
- Samples from patient and healthy control (a chemical pathologist)
Experiment for Patient and Control

- Transport and storage of blood sample at three environment: (i) 37°C, (ii) room temperature (hospital setting), (iii) -4°C

- Three different storage time before centrifuge to separate plasma: (i) immediately, (ii) 2 hours, (iii) 4 hours
The diagrams show the potassium levels (mmol/L) over time for different conditions. The graphs are divided into two categories: Patient and Healthy control.

Patient
- **A-37°C**: The potassium levels remain relatively stable at around 4.5 mmol/L.
- **B-RT**: The potassium levels increase gradually from Time 0 to Time 4, reaching approximately 9 mmol/L.
- **C-4°C**: The potassium levels rise significantly from Time 0 to Time 4, peaking at around 9.5 mmol/L.

Healthy control
- **A-37°C**: The potassium levels are stable and around 4.0 mmol/L.
- **B-RT**: The potassium levels show a slight decrease from Time 0 to Time 4, remaining close to 4.0 mmol/L.
- **C-4°C**: The potassium levels decrease from Time 0 to Time 4, reaching approximately 3.5 mmol/L.
Diagnosis

Pseudohyperkalaemia secondary to temperature and time-dependent haemolysis \textit{in vitro} (cold agglutinin disease with haemolysis)
Minor Point on Workup for Cold Agglutinin Disease

- Part of the workup for this IgM disease is searching for secondary causes.
- Including measurement of serum electrophoresis and immunofixation.
- Remember to obtain and keep the blood specimen at 37-38°C (until the serum has been removed from the clot).
Why temperature precaution

– If the blood sample is cooled and not kept warm, the cold agglutinin will attach to the RBCs and be removed from the serum, causing a false-negative result.
Second Case

– Another call from Chemical Pathology before Lunar New Year
– K 7.5 mmol/L
Patient History

– 75-year-old male ex-smoker
– Beta thalassaemia trait
– Cold autoimmune haemolytic anaemia (AIHA) under haematologist since 2013
– Haptoglobin < 0.2, DAT Coomb’s positive C3d
– Bone marrow B cell lymphoproliferative disorder
Result on Chinese New Year Eve
Happy Ending
Final Solution: Educate and Tag

Precaution in renal function or LDH test of Mr. [redacted] (to avoid pseudohyperkalaemia due to cold antibody)

For sending out blood specimen (renal function test or LDH level):

- Arrange warm flask from urgent laboratory (ext 3353)
- Store in warm flask and transport to laboratory within 1 – 2 hours
- Chem Path urgent laboratory (ext 3353) in PWH will process the specimen as urgent sample

Division of Nephrology & Dept of Chemical Pathology
Adverse Drug Reaction

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adverse Drug Reaction</th>
<th>Additional Information</th>
<th>Level of Severity</th>
<th>Update</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alert

<table>
<thead>
<tr>
<th>Details</th>
<th>Additional Information</th>
<th>Validity From</th>
<th>Validity To</th>
<th>Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>cold AHIA with pseudohyperkalaemia</td>
<td>ensure transport of renal function blood test to laboratory within 2 hours, and stored in warm flask during transport</td>
<td>25-10-2016</td>
<td>27-10-2025</td>
<td>25-10-2025</td>
</tr>
</tbody>
</table>

Disclaimer: Records in **RED** are NOT checked by system against medications prescribed.
Summary

- Two cases of cold agglutinin disease causing laboratory artefacts as a result of *in vitro* temperature dependent haemolysis
- Pseudohyperkalaemia confirmed by repeating blood sample stored in warm flask and sent to laboratory within 2 hours